A Review of Environmental, Economic, and Application Aspects of Green Hydrogen Production Technologies

Rabia Khatoon^{1*}, Asghar Ali Ghoto², Majid Ali³

¹Department of Civil Engineering, University of Larkano, Larkana, Pakistan

²Department of Mechanical Engineering, Mehran University, Khairpur, Pakistan

 $Table \ S1: \ Various \ H_2 \ production \ methods \ with \ their \ advantages \ and \ disadvantages, \ system \ efficiency, \ operating \ temperature, \ energy \ efficiency, \ and \ H_2 \ production \ cost \ (Anwar \ et \ al., 2021)$

Production method	Advantages	Disadvantages	Temperature range (°C)	Efficiency (%)	Estimated cost (US\$.kg ⁻¹)	Ref
Steam methane reforming (SMR)	Conventional method Developed infrastructure	CO and CO ₂ emissions Unstable supply	700-1000	74-85	2.27	(Ahmed et al., 2016; Chi & Yu, 2018; Pinsky et al., 2020)
Gasification of solid fuel (Coal)	Inexpensive feedstock Abundant in nature Neutral CO ₂	 Inconsistent H₂ production Formation of tar Generation of heavy oil 	700-1000	60-75	1.48	(Chi & Yu, 2018; Pinsky et al., 2020)
Biomass process	Inexpensive Renewable source dependent	 H₂ production depends on the season. Unclean H₂ due to CH₄ as a byproduct 	800-1000	35-50	1.8-2.05	(Chi & Yu, 2018; Pinsky et al., 2020)
Water electrolysis	 Conventional technology Eco-friendly No carbon footprint Low energy requirement Useful O₂ as an additional product 	Storage problems Shipping issues Applicable only for a specific purpose	500-1000+	60-80	10.30	(Anwar et al., 2021; Chi & Yu, 2018; Pinsky et al., 2020)
Solar energy	Abundant energy source	Variation in the intensity of solar radiation	200-2000	20	10-30	(VEZIROGLU, 2002)
Nuclear energy	Carbon free Sustainable	Uncertain future Depend on the mining of uranium	300-950	45-50	4.5-7	(Balat & Balat, 2009; Chi & Yu, 2018; Pinsky et al., 2020)
Wind energy	Pollution free Reduction of GHG emissions	Prone to global climate change Fluctuation issues due to the variability of wind energy		21	7-11	(Anwar et al., 2021; Chi & Yu, 2018; Pinsky et al., 2020)

³Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, United States

^{*} Corresponding Author: Rabia Khatoon (mscrabia@outlook.com)

Table S2: Calculation of the H2 production cost based on the various options. A study conducted by Achour et al. (2023)

Case No	Total chemical and utility cost (US\$/hr)	Total chemical and utility cost (US\$/d)	Electricity cost (US\$/kW/h)	Hydrogen production (kg/hr)	Total electricity cost	Total energy required (kW/hr)	Electricity cost of producing 1 kg H ₂ (US\$/hr)	Desalination cost (US\$/kg H ₂)	Total cost (US\$/kg)				
	First option												
Case 03	0.368	8.84	0.06	22.12	69.69	1010	3.149	0.028	3.51				
Case 15	0.384	9.22	0.06	22.12	69.69	1010	3.149	0.029	3.53				
	Second option												
Case 03	0.368	8.84	0.104	22.12	105.04	1010	4.747	0.034	5.11				
Case 15	0.384	9.22	0.104	22.12	105.04	1010	4.747	0.035	5.13				
	Third option												
Case 03	0.368	8.84	0.168	22.12	169.68	1010	7.669	0.051	7.720				
Case 15	0.384	9.22	0.168	22.12	169.68	1010	7.669	0.052	7.721				

References

- Achour, Y., Berrada, A., Arechkik, A., & El Mrabet, R. (2023). Techno-economic assessment of hydrogen production from three different solar photovoltaic technologies. *International Journal of Hydrogen Energy*, 48(83), 32261-32276. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.05.017
- Ahmed, A., Al-Amin, A. Q., Ambrose, A. F., & Saidur, R. (2016). Hydrogen fuel and transport system: A sustainable and environmental future. *International Journal of Hydrogen Energy*, 41(3), 1369-1380. https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.11.084
- Anwar, S., Khan, F., Zhang, Y., & Djire, A. (2021). Recent development in electrocatalysts for hydrogen production through water electrolysis. *International Journal of Hydrogen Energy*, 46(63), 32284-32317. https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.06.191
- Balat, M., & Balat, M. (2009). Political, economic and environmental impacts of biomass-based hydrogen. *International Journal of Hydrogen Energy*, 34(9), 3589-3603. https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.02.067
- Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. *Chinese Journal of Catalysis*, 39(3), 390-394. https://doi.org/https://doi.org/https://doi.org/https://doi.org/10.1016/S1872-2067(17)62949-8
- Pinsky, R., Sabharwall, P., Hartvigsen, J., & O'Brien, J. (2020). Comparative review of hydrogen production technologies for nuclear hybrid energy systems. *Progress in Nuclear Energy*, 123, 103317. https://doi.org/https://doi.org/10.1016/j.pnucene.2020.103317
- VEZIROGLU, T. N. (2002). Hydrogen energy system for sustainability Permanent solution to global energy environmental problems. *Journal of advanced science*, 13(3), 101-116. https://doi.org/https://doi.org/10.2978/jsas.13.101.